To vanquish a vampire, one generally employs a stake, a cross, a string of garlic, or a combination of all three. But there's one highly effective anti-vampire weapon that few think to use: math.
According to atlasobscura.com,
A surprisingly large number of academic studies—as in, more than one—have applied mathematical modeling to the concept of human-vampire co-existence. Using the depiction of bloodsuckers in various forms of media, from Bram Stoker'sDracula to True Blood, these papers look at whether Earth's vampire population would inevitably annihilate humanity, and, if so, how long it would take.
Mathematically influenced scholarship of vampire-human relations took off in the early '80s courtesy of Richard Hartl and Alexander Mehlmann, Austrian mathematicians with a mutual penchant for the undead. In 1982, their paper, titled "The Transylvanian Problem of Renewable Resources" was published in the operations research journal RAIRO. In it, Hartl and Mehlmann posited "optimal bloodsucking strategies for dynamic continuous vampires."
In doing so, they divided vampires into three categories: the "asymptotically satiated vampire," the "blood maximizing vampire," and the "unsatiable vampire." Regardless of the type of vampire, though, they found that bloodsuckers can't help but face diminishing resources.To read more, click here!
No comments:
Post a Comment